Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory

Abstract : In this paper, we construct some interesting Gevrey functions of order α for every α > 1 with compact support by a clever use of the Bray-Mandelbrojt iterative process. We then apply these results to the moment method, which will enable us to derive some upper bounds for the cost of fast boundary controls for a class of linear equations of parabolic or dispersive type that partially improve the existing results proved in [P. Lissy, On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension SIAM J. Control Optim., 52(4), 2651-2676]. However this construction fails to improve the results of [G. Tenenbaum and M. Tucsnak, New blow-up rates of fast controls for the Schrödinger and heat equations, Journal of Differential Equations, 243 (2007), 70-100] in the precise case of the usual heat and Schrödinger equation.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01251818
Contributeur : Christine Okret-Manville <>
Soumis le : mercredi 6 janvier 2016 - 17:41:40
Dernière modification le : mercredi 28 septembre 2016 - 16:04:46
Document(s) archivé(s) le : jeudi 7 avril 2016 - 16:13:33

Fichier

upper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01251818, version 1

Collections

Citation

Pierre Lissy. Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory. 2016. 〈hal-01251818〉

Partager

Métriques

Consultations de la notice

162

Téléchargements de fichiers

37