Differential Games with Asymmetric and Correlated Information

Abstract : Differential games with asymmetric information were introduced by Cardaliaguet (SIAM J Control Optim 46:816–838, 2007). As in repeated games with lack of information on both sides (Aumann and Maschler in Repeated games with incomplete information, with the collaboration of R. Stearns, 1995), each player receives a private signal (his type) before the game starts and has a prior belief about his opponent’s type. Then, a differential game is played in which the dynamic and the payoff functions depend on both types: each player is thus partially informed about the differential game that is played. The existence of the value function and some characterizations have been obtained under the assumption that the signals are drawn independently. In this paper, we drop this assumption and extend these results to the general case of correlated types. As an application, we provide a new characterization of the asymptotic value of repeated games with incomplete information on both sides, as the unique dual solution of a Hamilton–Jacobi equation.
Type de document :
Article dans une revue
Dynamic Games and Applications, 2015, 5 (3), 〈10.1007/s13235-014-0131-1〉
Liste complète des métadonnées

Contributeur : Christine Okret-Manville <>
Soumis le : vendredi 3 juin 2016 - 17:19:15
Dernière modification le : jeudi 11 janvier 2018 - 06:12:20




Miquel Oliu Barton. Differential Games with Asymmetric and Correlated Information. Dynamic Games and Applications, 2015, 5 (3), 〈10.1007/s13235-014-0131-1〉. 〈hal-01326523〉



Consultations de la notice