A note on r-equitable k-colorings of trees
Alain Hertz, Bernard Ries

To cite this version:

HAL Id: hal-01593566
https://hal.archives-ouvertes.fr/hal-01593566
Submitted on 29 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A NOTE ON R-EQUITABLE K-COLORINGS OF TREES

Alain HERTZ
Ecole Polytechnique de Montréal and GERAD
Montréal, Canada
alain.hertz@gerad.ca

Bernard RIES
PSL, Université Paris-Dauphine
75775 Paris Cedex 16, France
CNRS, LAMSADE UMR 7243
bernard.ries@dauphine.fr

Received: July 2013 / Accepted: November 2013

Abstract: A graph $G = (V,E)$ is $r$-equitably $k$-colorable if there exists a partition of $V$ into $k$ independent sets $V_1, V_2, \cdots, V_k$ such that $|V_i| - |V_j| \leq r$ for all $i, j \in \{1, 2, \cdots, k\}$. In this note, we show that if two trees $T_1$ and $T_2$ of order at least two are $r$-equitably $k$-colorable for $r \geq 1$ and $k \geq 3$, then all trees obtained by adding an arbitrary edge between $T_1$ and $T_2$ are also $r$-equitably $k$-colorable.

Keywords: Trees, equitable coloring, independent sets.

MSC: 05C15, 05C69.

1 INTRODUCTION

All graphs in this paper are finite, simple and loopless. Let $G = (V,E)$ be a graph. We denote by $|G|$ its order, i.e., the number of vertices in $G$. For a vertex $v \in V$, let $N(v)$ denote the set of vertices in $G$ that are adjacent to $v$. $N(v)$ is called the neighborhood of $v$ and its elements are neighbors of $v$. The degree of vertex $v$, denoted by $\deg(v)$, is the number of neighbors of $v$, i.e., $\deg(v) = |N(v)|$. $\Delta(G)$ denotes the maximum degree of $G$, i.e., $\Delta(G) = \max\{\deg(v)\mid v \in V\}$. For a set $V' \subseteq V$, we denote by $G - V'$ the graph obtained from $G$ by deleting all vertices in $V'$ as well as all edges incident to at least one vertex of $V'$.

An independent set in a graph $G = (V,E)$ is a set $S \subseteq V$ of pairwise nonadjacent vertices. The maximum size of an independent set in a graph $G = (V,E)$ is called the independence number of $G$ and denoted by $\alpha(G)$.

A $k$-coloring $c$ of a graph $G = (V,E)$ is a partition of $V$ into $k$ independent sets which we will denote by $V_1(c), V_2(c), \cdots, V_k(c)$ and refer to as color classes.
The cardinality of a largest color class with respect to a coloring \( c \) will be denoted by \( \text{Max}_c \). A graph \( G \) is \( r \)-equitably \( k \)-colorable, with \( r \geq 1 \) and \( k \geq 2 \), if there exists a \( k \)-coloring \( c \) of \( G \) such that \( | |V_i(c)| - |V_j(c)| | \leq r \) for all \( i, j \in \{1, 2, \cdots, k\} \). Such a coloring is called an \( r \)-equitable \( k \)-coloring of \( G \). A graph which is 1-equitably \( k \)-colorable is simply said to be \( \text{equitably} \, k \)-colorable.

The notion of equitable colorability was introduced in [8] and has been studied since then by many authors (see [2, 3, 4, 5, 6, 7, 9]). In [3], the authors gave a complete characterization of trees which are equitably \( k \)-colorable. This result was then generalized to forests in [2]. More precisely, for a forest \( F = (V, E) \), let \( \alpha^*(F) = \min\{\alpha(F - N[v])| v \in V \text{ and } \deg(v) = \Delta(F)\} \).

Theorem 1.1 ([2]) Suppose \( F = (V, E) \) is a forest and \( k \geq 3 \) is an integer. Then \( F \) is equitably \( k \)-colorable if and only if \( k \geq \left\lceil \frac{|F| + 1}{\alpha^*(F) + 2} \right\rceil \).

This result can easily be generalized to \( r \)-equitable \( k \)-colorings.

Theorem 1.2 ([1]) Suppose \( F = (V, E) \) is a forest and \( r \geq 1, k \geq 3 \) are two integers. Then \( F \) is \( r \)-equitably \( k \)-colorable if and only if \( k \geq \left\lceil \frac{|F| + r}{\alpha^*(F) + r + 1} \right\rceil \).

Proof: Suppose \( F \) is \( r \)-equitably \( k \)-colorable for \( r \geq 1 \) and \( k \geq 3 \). Let \( v \) be a vertex in \( F \) such that \( \deg(v) = \Delta(F) \) and \( \alpha(F - N[v]) = \alpha^*(F) \). Clearly, for such a coloring, there are at most \( \alpha^*(F) + 1 \) vertices in the color class that contains \( v \).

It follows that all other color classes contain at most \( \alpha^*(F) + r + 1 \) vertices. Thus \( |F| \leq \alpha^*(F) + 1 + (k - 1)(\alpha^*(F) + r + 1) = k(\alpha^*(F) + r + 1) - r \), and we therefore have \( k \geq \left\lceil \frac{|F| + r}{\alpha^*(F) + r + 1} \right\rceil \).

Conversely, let \( k \geq \left\lceil \frac{|F| + r}{\alpha^*(F) + r + 1} \right\rceil \). Consider the forest \( F' = (V', E') \) obtained from \( F \) by adding \( r - 1 \) new isolated vertices. Then \( |F'| = |F| + r - 1 \) and \( \alpha^*(F') = \alpha^*(F) + r - 1 \). Thus \( k \geq \left\lceil \frac{|F'| + r}{\alpha^*(F') + r + 1} \right\rceil = \left\lceil \frac{|F'| + 1}{\alpha^*(F) + 2} \right\rceil \). By Theorem 1.1, \( F' \) is equitably \( k \)-colorable. Restricting the color classes to \( V \) gives an \( r \)-equitable \( k \)-coloring of \( F \).

In this note, we are interested in a different sufficient condition for a tree to be \( r \)-equitably \( k \)-colorable. More precisely, given a tree \( T = (V, E) \) and an edge \( e \in E \) such that its removal from \( T \) creates two trees \( T_1 \) and \( T_2 \) of order at least two, we show that if both \( T_1 \) and \( T_2 \) are \( r \)-equitably \( k \)-colorable, for \( r \geq 1 \) and \( k \geq 3 \), then \( T \) is also \( r \)-equitably \( k \)-colorable. We also explain why \( |T_1|, |T_2| \geq 2 \) and \( k \geq 3 \) are necessary conditions.

## 2 A SUFFICIENT CONDITION

Consider a tree \( T \) and two integers \( r \geq 1 \) and \( k \geq 3 \). Let \( c \) be an arbitrary \( r \)-equitable \( k \)-coloring of the vertex set of \( T \) such that \( |V_i(c)| \geq |V_2(c)| \geq \cdots \geq |V_k(c)| \).

Then there may be vertices in \( T \) which are forced to be colored with color \( k \). Indeed, if for instance \( T \) is a star on \( (k - 1)r + k \) vertices, then the vertex \( v \) of degree \( > 1 \) necessarily belongs to \( V_k(c) \) and actually \( V_k(c) = \{v\} \). Furthermore, we have \( |V_i(c)| = r + 1 \) for \( i \in \{1, 2, \cdots, k - 1\} \). It turns out that this is no longer true for colors \( 1, 2, \cdots, k - 1 \), as shown in the following property.

Lemma 2.1 Consider an \( r \)-equitably \( k \)-colorable tree \( T \) of order at least two, where \( r \geq 1 \) and \( k \geq 3 \). Also, let \( \ell \) be any element in \( \{1, 2, \cdots, k - 1\} \). Then, for any vertex \( u \in T \), there exists an \( r \)-equitable \( k \)-coloring \( c \) of \( T \) with \( |V_\ell(c)| \geq |V_j(c)| \) for all \( 1 \leq i < j \leq k \) such that \( u \notin V_\ell(c) \).
Proof: Suppose the lemma is false. We then clearly have $|T| \geq 3$. Let $c$ be an $r$-equitable $k$-coloring of $T$ with $|V_i(c)| \geq |V_j(c)|$ for all $1 \leq i < j \leq k$. Among all such colorings we choose one such that, for each $t = 1, 2, \ldots, k$, there is no $r$-equitable $k$-coloring $c'$ of $T$ with $|V_i(c)| = |V_t(c')|$ for $i = 1, 2, \ldots, t - 1$ and $\max_{i=t}^k(|V_t(c')|) < |V_t(c)|$. In other words, $\max_{c'} = |V_1(c)|$ is minimum among all $r$-equitable $k$-colorings of $T$, $|V_2(c)|$ is minimum among all $r$-equitable $k$-colorings $c'$ of $T$ with $\max_{c'} = \max_{c''}$, and so on.

Let $\ell \in \{1, 2, \ldots, k - 1\}$ be an integer for which the lemma does not hold. We define $x = 1$, $y = 2$, $z = 3$ if $\ell = 1$, and $x = \ell - 1$, $y = \ell$, $z = \ell + 1$ if $\ell > 1$. Since we assume that the lemma is false, it follows that $u \in V_i(c)$, which means that $u \in V_2(c)$ if $\ell = 1$ and $u \in V_y(c)$ if $\ell > 1$. Then $|V_2(c)| > |V_y(c)|$, otherwise we could assign color $x$ to all vertices in $V_2(c)$ and color $y$ to all vertices in $V_2(c)$ to obtain an $r$-equitable $k$-coloring $c'$ with $u \notin V_t(c')$, a contradiction. Similarly, we must have $|V_y(c)| > |V_z(c)|$ when $\ell > 1$ since otherwise we could assign color $y$ to all vertices in $V_2(c)$ and color $z$ to all vertices in $V_3(c)$, and thus the lemma would hold.

We define $F$ as the subgraph of $T$ induced by $V_2(c) \cup V_y(c) \cup V_z(c)$. If $F$ is disconnected, we add some edges to make $F$ become a tree $T'$ such that no two adjacent vertices have the same color with respect to $c$; otherwise we set $T' = F$. Let $V'$ denote the vertex set of $T'$. Moreover, for $q = y$ or $z$, we denote $\overline{q} = y + z - q$. This implies that $\overline{\overline{q}} = z$ if $q = y$ and $\overline{\overline{q}} = y$ if $q = z$. We start by proving the following two claims.

**Claim 1:** There exists no $r$-equitable $3$-coloring $c'$ of $T'$ (using colors $x, y, z$) with $c'(u) = c(u)$, $|V_2(c')| = |V_2(c)| - 1$, $|V_y(c')| = |V_y(c)| + 1$ and $|V_z(c')| = |V_z(c)|$ for $q = y$ or $z$.

Indeed, if such a coloring $c'$ exists, then the assumption on $c$ implies $|V_q(c')| = |V_q(c)| > |V_z(c')|$. Now we can obtain an $r$-equitable $k$-coloring $c^*$ of $T$ by letting $V_2(c^*) = V_2(c')$, $V_y(c^*) = V_z(c')$, and $V_z(c^*) = V_2(c')$ if $i \neq x, q$. We distinguish two cases:

- If $\ell = 1$, we have $|V_1(c^*)| > \max_{i=2}^k(|V_i(c^*)|)$ and $u \notin V_1(c^*)$.
- If $\ell > 1$, we have $q = y$ since otherwise $|V_2(c')| = |V_2(c)| + 1 = |V_2(c)|$ which contradicts $|V_2(c)| > |V_y(c)| > |V_z(c)|$. Then $|V_1(c^*)| \geq \cdots \geq |V_{2-1}(c^*)| > |V_i(c')| \geq |V_{i+1}(c')| \geq \cdots \geq |V_k(c^*)|$ and $u \in V_{i-1}(c')$. Thus, in both cases, $c^*$ is an $r$-equitable $k$-coloring of $T$ such that $|V_i(c^*)| \geq |V_j(c^*)|$ for all $1 \leq i < j \leq k$ and $u \notin V_t(c^*)$, a contradiction.

**Claim 2:** No leaf of $T'$, except possibly $u$, is in $V_q(c)$.

Indeed, assume $T'$ has a leaf $v \neq u$ in $V_q(c)$ and let $w$ be its unique neighbor in $T'$. We can change the color of $v$ from $x$ to $c(w)$ to obtain an $r$-equitable $3$-coloring $c'$ of $T'$ with $c'(u) = c(u)$, $|V_2(c')| = |V_2(c)| - 1$, $|V_{c(w)}(c')(c')| = |V_{c(w)}(c')| + 1$ and $|V_{c(w)}(c')(c')| = |V_{c(w)}(c')|$, contradicting Claim 1.

Let $\vec{T}$ be the oriented rooted tree obtained from $T'$ by orienting the edges from root $u$ to the leaves. Let us partition the vertices in $V_2(c)$ into subsets $U_1, \ldots, U_p$ such that $U_q$ ($q = 1, 2, \ldots, p$) contains all vertices in $V_2(c)$ having no successor in $V_2(c) \cup \cup_{j=1}^{p-1} U_j$. For a vertex $v \in U_1$, let $L(v)$ denote the set of leaves in $\vec{T}$ having $v$ as predecessor.
In summary, we have $|L(v)| = 1$ for some $v \in U_1$, then let $P = v \to s_1 \to \cdots \to s_n$ denote the path from $v$ to the leaf $s_n$ in $L(v)$. If $v = u$ (and hence $\ell = 1$ since $u \in V_2(c)$) then $T'$ is a chain with only one vertex in $V_2(c)$, which means that $V_2(c) = V_2(c) = \emptyset$ since $|V_2(c)| > |V_2(c)| \geq |V_2(c)|$. Thus $T'$ has only one vertex, namely $u$, and since $u \in V_1(c)$ this implies that $T$ has only one vertex, a contradiction. Hence $v \neq u$.

Let $w$ be the predecessor of $v$ in $\text{vec}T$:

- if $c(w) = c(s_1)$, we change the color of $v$ to $c(w)$ to obtain an $r$-equitable 3-coloring $c' \neq T'$ with $c'(u) = c(u)$, $|V_2(c')| = |V_2(c)| - 1$, and since $|V_2(c')| = |V_2(c)| - 1$, contradicts Claim 1.

- if $c(w) \neq c(s_1)$, we assign color $c(s_1)$ to $v$, color $c(s_{j+1})$ to $s_j$ ($j = 1, 2, \ldots, a-1$), and color $x$ to $s_a$; we obtain an $r$-equitable 3-coloring $c' \neq T'$ with $|V_2(c')| = |V_2(c)| (i = x, y, z)$, $c'(u) = c(u)$ and a leaf $s_a \in V_2(c')$. But this contradicts Claim 2.

We therefore conclude that $|L(v)| \geq 2$ for all $v \in U_1$. By denoting $W_1 = \bigcup_{v \in U_1} L(v)$, we get $|W_1| \geq 2|U_1|$. For each set $U_q$, with $q > 1$, we will now construct a set $W_q$ containing vertices in $V_2(c) \cup V_2(c)$ that are successors of vertices in $U_q$ but not successors of vertices in $U_{q-1}$. So let $v$ be any vertex in $U_q$ ($q > 1$). If $v$ has at least 2 immediate successors in $\text{vec}T$, we add two of them to $W_q$. If $v$ has a unique immediate successor in $\text{vec}T$, then let $P = v \to s_1 \to \cdots \to s_n \to v'$ denote a path from $v$ to a vertex $v' \in U_{q-1}$. If $a > 1$, we add $s_1$ and $s_2$ to $W_q$. If $a = 1$ and $s_1$ has an immediate successor $w \notin V_2(c)$, then we add $s_1$ and $w$ to $W_q$. Assume now that $a = 1$ and all the immediate successors of $s_1$ are in $V_2(c)$. We will prove that such a case is not possible.

- If $v \neq u$, then $v$ has a predecessor $w$ in $\text{vec}T$. We must have $c(w) = c(s_1)$, otherwise we could assign color $c(s_1)$ to $v$ to obtain an $r$-equitable 3-coloring $c'$ of $T'$ with $c'(u) = c(u)$, $|V_2(c')| = |V_2(c)| - 1$, $|V_2(c')| = |V_2(c)| - 1$, and $|V_2(c')| = |V_2(c)| - 1$, contradicting Claim 1. But now we can assign color $c(s_1)$ to $v$ and assign color $c(s_1)$ to $s_1$ to obtain an $r$-equitable 3-coloring $c'$ of $T'$ with $c'(u) = c(u)$, $|V_2(c')| = |V_2(c)| - 1$, $|V_2(c')| = |V_2(c)| - 1$, and $|V_2(c')| = |V_2(c)| - 1$, contradicting Claim 1.

- If $v = u$, then $\ell = 1$ since $u \in V_2(c)$. By assigning color $c(s_1)$ to $u$ and color $c(s_1)$ to $s_1$, we obtain an $r$-equitable 3-coloring $c'$ of $T'$ with $|V_2(c')| = |V_2(c)| - 1$, $|V_2(c')| = |V_2(c)| - 1$, and $|V_2(c')| = |V_2(c)| - 1$. It follows from the assumptions on $c$ that $|V_2(c')| = |V_2(c)| > |V_2(c')| = |V_2(c')|$. Thus the lemma would hold, a contradiction.

In summary, we have $|W_q| \geq 2|U_q|$. Since all sets $W_q$ are disjoint, we have

$$|V_2(c)| + |V_2(c)| \geq \sum_{q=1}^{p} |W_q| \geq \sum_{q=1}^{p} 2|U_q| = 2|V_2(c)|.$$ 

Hence $|V_2(c)|$ or $|V_2(c)|$ is larger than or equal to $|V_2(c)|$, a contradiction.

Lemma 2.1 allows us to show our main result.

**Theorem 2.2** Let $T_1$ and $T_2$ be two trees or order at least two. If both $T_1$ and $T_2$ are $r$-equitably $k$-colorable for $r \geq 1$ and $k \geq 3$, then a tree $T$ obtained by adding an arbitrary edge between $T_1$ and $T_2$ is also $r$-equitably $k$-colorable.
Consider an \( r \)-equitable \( k \)-coloring \( c \) of \( T_1 \) and an \( r \)-equitable \( k \)-coloring \( c' \) of \( T_2 \) such that \( |V_i(c)| \geq |V_j(c')| \) and \( |V_i(c)| \geq |V_j(c')| \) for all \( 1 \leq i < j \leq k \). Let \( u \) be a vertex in \( T_1 \) and \( v \) a vertex in \( T_2 \), and let \( T \) be the tree obtained by adding an edge which joins \( u \) and \( v \). According to Lemma 2.1, we may assume that \( v \notin V_1(c') \). Hence \( v \in V_{k-1}(c') \) for some \( \ell \in \{1, 2, \ldots, k-1\} \) and it follows from Lemma 2.1 that we may assume that \( u \notin V_\ell(c) \). We can therefore construct a \( k \)-coloring \( c^* \) of \( T \) such that \( V_i(c^*) = V_i(c) \cup V_{k-\ell+1}(c') \), \( i = 1, 2, \ldots, k \). For \( i > j \), we have:

\[
|V_i(c^*)| - |V_j(c^*)| = |V_i(c)| + |V_{k-\ell+1}(c')| - (|V_j(c)| + |V_{k-\ell+1}(c')|)
\]

Since \( V_j(c) \geq |V_i(c)| \) and \( |V_{k-\ell+1}(c')| \leq |V_{k-i+1}(c')| \), we have:

- \( |V_j(c)| - |V_i(c^*)| \geq |V_j(c)| - |V_i(c)| \geq r; \)
- \( |V_j(c^*)| - |V_i(c^*)| \leq |V_{k-\ell+1}(c')| - |V_{k-j+1}(c')| \leq r. \)

This proves that the considered \( k \)-coloring \( c^* \) of \( T \) is \( r \)-equitable.

Note that the condition \( k \geq 3 \) in Theorem 2.2 is necessary. Indeed, if both \( T_1 \) and \( T_2 \) are isomorphic to a star on 3 vertices (with \( u \) being the vertex of degree two in \( T_1 \) and \( v \) a leaf in \( T_2 \)) then clearly \( T_1 \) and \( T_2 \) are \( 1 \)-equitably 2-colorable. But by adding an edge which joins \( u \) and \( v \), we obtain a tree \( T \) which is not \( 1 \)-equitably 2-colorable.

Note also that the condition in Theorem 2.2 on the number of vertices in each tree is necessary. Indeed, if \( T_1 \) is an \( r \)-equitably \( k \)-colorable tree for some \( k \geq 3 \) and \( r \geq 1 \), and if \( T_2 \) contains a single vertex \( u \), then the tree \( T' \) obtained by adding an edge which joins \( v \) and a vertex \( u \) of \( T_1 \) is possibly not \( r \)-equitably \( k \)-colorable. For example, if \( u \) is the vertex of degree four in the star \( T_1 \) on five vertices, and if we add a neighbor \( v \) (the single vertex in \( T_2 \)) to \( u \), we obtain a star \( T' \) on six vertices. While \( T_1 \) and \( T_2 \) are clearly \( 1 \)-equitably 3-colorable, \( T' \) is not \( 1 \)-equitably 3-colorable. It is however not difficult to prove that if \( T \) is an \( r \)-equitably \( k \)-colorable tree for some \( k \geq 2 \) and \( r \geq 1 \), then the tree \( T' \) obtained by adding a new vertex \( v \) and making it adjacent to some vertex \( u \) of \( T \) is \( (r+1) \)-equitably \( k \)-colorable. Indeed, given an \( r \)-equitable \( k \)-coloring \( c \) of \( T \), we can extend it to a \( k \)-coloring \( c' \) of \( T' \) by assigning any color \( j \neq c(u) \) to \( v \) with \( j \in \{1, 2, \ldots, k\} \). If \( |V_j(c)| \geq |V_i(c)| \) for all \( i \neq j \), then \( c' \) is \( (r+1) \)-equitable, otherwise \( c' \) is \( r \)-equitable.

ACKNOWLEDGEMENT

This note was written while the first author was visiting LAMSADÉ at the Université Paris-Dauphine and while the second author was visiting GERAD and Ecole Polytechnique de Montréal. The support of both institutions is gratefully acknowledged.

REFERENCES