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VARIATIONAL SECOND-ORDER INTERPOLATION ON THE

GROUP OF DIFFEOMORPHISMS WITH A RIGHT-INVARIANT

METRIC

FRANÇOIS-XAVIER VIALARD

Abstract. In this note, we propose a variational framework in which the
minimization of the acceleration on the group of diffeomorphisms endowed with
a right-invariant metric is well-posed. It relies on constraining the acceleration
to belong to a Sobolev space of higher-order than the order of the metric in
order to gain compactness. It provides the theoretical guarantee of existence
of minimizers which is compulsory for numerical simulations.

1. Introduction

The question of interpolating a time-sequence of shapes with a curve and rep-
resenting a shape evolution with few parameters have been addressed in the lit-
erature related to shape analysis and medical imaging since the last ten years.
Several methods have been proposed and studied and they essentially rely on ex-
tension of standard tools available in Euclidean geometry to shape spaces. In this
direction, we mention geodesic regression, cubic regression, kernel methods... The
generalization of these tools to infinite dimensional setting are sometimes compli-
cated by the fact that the shape space is not a flat space, nor a finite dimensional
space. However, the shape space is usually endowed with a Riemannian structure
and most often in infinite dimensions. The generalizations of this Euclidean tools
are often introduced by variational formulations, the simplest example being the
case of shortest path between two shapes, i.e. geodesics on the space of shapes.
Even in that particular example, finding a variational setting in which the ob-
ject of interest is well defined is of interest, since the existence of an extremum is
not guaranteed in general and is complicated by the infinite dimensional setting.
For example, in the case of group of diffeomorphisms, this question is addressed
in [BV17], in which the authors prove that the group of diffeomorphisms of the
Euclidean space endowed with a right-invariant Sobolev metric of high enough or-
der is complete in the sense of the Hopf-Rinow theorem. The case of the group
of diffeomorphisms with right-invariant metric is relevant for applications in med-
ical imaging and in particular for the problem of diffeomorphic image matching
[You08, Tro95, BMTY05]. It is also natural to study and develop higher-order
interpolations in the space of shapes, which has been actively developed in finite
dimensions [BBT65, LF73, NHP89, CLP95, CL95, GG02, Koi92]. It was also ex-
tensively used and numerically developed in image processing and computer vision
[Mum94, CGMP11, USK15, SASK12, BK94, CKKS02]. In the past few years, these
higher-order models have been introduced in biomedical imaging for interpolation
of a time sequence of shapes. They have been proposed in [VT12] for a diffeo-
morphic group action on a finite dimensional manifold and further developed for
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2 FRANÇOIS-XAVIER VIALARD

general invariant higher-order lagrangians in [GHM+12a, GHM+12b] on a group.
A numerical implementation together with a generalized model have been proposed
in [SVN15] in the context of medical imaging applications. However, in all these
articles, the question of existence of an extremum is not treated. An attempt is
given in [TV16] where the exact relaxation of the problem is shown on the group of
diffeomorphisms of the interval [0, 1]. The main result of [TV16] consists in provid-
ing the existence of a minimizer in a larger space where the relaxation is defined.
Although it does not completely solve the problem, it shows that existence of cubic
splines for a group of diffeomorphisms with a right-invariant metric is non trivial.
Let us discuss where the difficulty comes in a Riemannian setting. Riemannian
splines are minimizers of

(1.1) J (x) =

∫ 1

0

g

(

D

Dt
ẋ,

D

Dt
ẋ

)

dt ,

where (M, g) is a Riemannian manifold, D
Dt is its associated covariant derivative

and x is a sufficiently smooth curve from [0, 1] in M satisfying first order boundary
conditions, i.e. x(0), ẋ(0) and x(1), ẋ(1) are fixed. The term

D

Dt
ẋ = ẍ+ Γ(x)(ẋ, ẋ)

(written in coordinates, with Γ the Christoffel symbols) contains nonlinearities
which contribute in the variational problem (3.1) by possibly generating high-
frequency oscillations in the space variable.

Although this notion of Riemannian cubics could not be well defined in general, it
is possible to slightly modify it to make it well-posed. A modification of this type has
recently been proposed in [HRW17] in their framework. In this paper, we propose
a simple variational setting which makes the second-order variational problem well-
posed at the expense of increasing the regularity of the group of diffeomorphisms
on which the second-order interpolation is feasible. For practical applications, this
gain of smoothness, or loss of controllability of the diffeomorphism does not matter
so much since smoothness is preferred in medical image registration. However, the
theoretical existence is guaranteed. The main result of the paper is the following

Theorem 1 (Main result). Let Ω be a bounded domain in R
d and s′ ≥ s+1. There

exists a minimizer to the functional

(1.2) J (x) =

∫ 1

0

∥

∥

∥

∥

D

Dt
ẋ ◦ x−1

∥

∥

∥

∥

2

Hs′

dt ,

on the loop space Ω0,1(GHs′ (Ω,Rd)) where D
Dt is the covariant derivative associated

with the right-invariant Hs metric.

In other words, the acceleration is measured in a stronger space than the ambient
space so that it will prevent from creating oscillations.

2. Background on right-invariant metrics on diffeomorphisms group

Sobolev right-invariant metrics on the group of diffeomorphisms. In
[BV17], the authors proved the following theorem LetM be either Rd or a compact
manifold without boundary of dimension d. We define hereafter a group of diffeo-
morphisms of M which is a complete metric space. Consider a space V a Hilbert
space of vector fields on M (rapidly decreasing at infinity in the unbounded case),
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left invariant by their flows, such that the inclusion map V →֒ W 1,∞(M,Rd) is
continuous. This hypothesis implies that the flow of a time dependent vector field
in L2([0, 1], V ) is well defined, see [You08, Appendix C]. Then, the set of flows at
time 1 defines a group of diffeomorphisms denoted by GV . Denoting

(2.1) Fl1(ξ) = ϕ(1)

where ϕ solves the flow equation

∂tϕ(t, x) = ξ(t, ϕ(t, x))(2.2)

ϕ(0, x) = x ∀x ∈ D ,(2.3)

we define

(2.4) GV
def.
= {ϕ(1) : ∃ ξ ∈ L2([0, 1], V ) s.t. Fl1(ξ)} ,

which has been introduced by Trouvé in [Tro95]. On this group, Trouvé defines a
metric

(2.5) dist(ψ1, ψ0)
2 = inf

{
∫ 1

0

‖ξ‖2V dt : ξ ∈ L2([0, 1], V ) s.t. ψ1 = Fl1(ξ) ◦ ψ0

}

under which he proves that GV is complete. In full generality, that is for a general
space of vector fields V , very few properties are known on this group. For instance,
it is a priori not a topological group, or more precisely, there is no known topologi-
cal structure making it a topological group (the inversion need not be continuous).
Moreover, there does not need to be a differentiable structure on this group. How-
ever, for certain choices of spaces V , such structures are available and therefore more
properties can be derived in this situation. Indeed, consider the group Ds(M), with
s > d/2+1, which consists of all C1-diffeomorphisms of Sobolev regularityHs. It is
known since the work of Ebin and Marsden [EM70] that Ds(M) is a smooth Hilbert
manifold and a topological group. It only remains to prove that GHs = Ds(M)0
(the connected component of identity) which is done in [BV17, Section 8] and its
main result is

Theorem 2. Let M be R
d or a closed manifold and s > d/2+1. If Gs is a smooth,

right-invariant Sobolev-metric of order s on Ds(M), then

(1) (Ds(M), Gs) is geodesically complete;
(2) (Ds(M)0, dist

s) is a complete metric space;
(3) Any two elements of Ds(M)0 can be joined by a minimizing geodesic.

The statements also hold for the subgroups Ds
µ(M) and Ds

ω(M) of diffeomorphisms
preserving a volume form µ or a symplectic structure ω.

The crucial ingredient in the proof is showing that the flow map

(2.6) Flt : L
1(I,Xs(M)) → Ds(M)

exists and is continuous.
In [VT12], we introduced the use of cubic splines in the space of shapes to

interpolate a sequence of shapes that are time dependent. Riemannian cubics (also
called Riemannian splines) and probably more famous, its constrained alternative
called Elastica belong to a class of problems that have been studied since the work
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of Euler (see the discussion in [Mum94]). Let us present the variational problem in
a Riemannian setting. Riemannian splines are minimizers of

(2.7) J (x) =

∫ 1

0

g

(

D

Dt
ẋ,

D

Dt
ẋ

)

dt ,

where (M, g) is a Riemannian manifold, D
Dt

is its associated covariant derivative
and x is a sufficiently smooth curve from [0, 1] in M satisfying first order bound-
ary conditions, i.e. x(0), ẋ(0) and x(1), ẋ(1) are fixed. The case of Elastica con-
sists in restricting the previous optimization problem to the set of curves that are
parametrized by unit speed (when the problem is feasible), namely g(ẋ, ẋ) = 1 for
all time. To the best of our knowledge, the only paper that deals with analytical
questions is [GG02] where the authors show in particular the existence of minimiz-
ers of a second-order functional on the space curves on a complete finite dimensional
Riemannian manifold.

In [GHM+12a], higher-order models are proposed on groups of diffeomorphisms
but for the standard Riemannian cubics functional, no analytical study was pro-
vided. Indeed, in the case of a Lie group G (and g its Lie algebra) with a right-
invariant metric (‖ · ‖g denoting the norm on the Lie algebra), the covariant deriv-
ative can be written as follows: Let V (t) ∈ Tg(t)G be a vector field along a curve
g(t) ∈ G

(2.8)
D

Dt
V =

(

ν̇ +
1

2
ad†ξ ν +

1

2
ad†ν ξ −

1

2
[ξ, ν]

)

G
(g).

where ad† is the metric adjoint defined by

(2.9) ad†ν κ := (ad∗ν(κ
♭))♯

for any ν, κ ∈ g and ♭ and ♯ are the musical operator for the cometric and metric
operator. Therefore, the reduced lagrangian for (3.1) is

(2.10) J (x) =

∫ 1

0

‖ξ̇ + ad†ξ ξ‖2g dt .

where ad† is the metric adjoint, i.e., it is written as

(2.11) ad†ν κ := (ad∗ν(κ
♭))♯

for any ν, κ ∈ g. We can also formulate the variational problem on the dual of the
Lie algebra g∗ by

(2.12) J (x) =

∫ 1

0

‖a(t)‖2
g∗ dt ,

under the constraint

(2.13) ṁ+ ad∗ξ m = a .

In infinite dimensions, there is a clear obstacle to use reduction since the operator
ad† is unbounded on the tangent space at identity due to a loss of derivative.
However, using the smooth Riemannian structure on Ds, functional (3.1) is well
defined.

The following proposition of [GG02] is valid in infinite dimensions:
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Proposition 3. Let (M, g) be an infinite dimensional Riemannian manifold and

Ω0,1(M) := {x ∈ H2([0, 1],M) |x(i) = xi , ẋ(i) = vi for i = 0, 1}
be the space of paths with the first order boundary constraints for given (x0, v0) ∈
TM and (x1, v1) ∈ TM . The functional (3.1) is smooth on Ω0,1(M) and

(2.14) J ′(x)(v) =

∫ 1

0

g(
D2

Dt2
v̇,
D

Dt
ẋ)− g(R(ẋ,

D

Dt
ẋ), v) dt .

A critical point of J is a smooth curve that satisfies the Riemannian cubic equation

(2.15)
D3

Dt3
ẋ−R(ẋ,

D

Dt
ẋ)ẋ = 0 .

The critical points of J are sometimes called Riemannian cubics or cubic poly-
nomials. The existence of minimizers does not follow from the corresponding proof
in [GG02] since it strongly relies on the finite dimension hypothesis to have com-
pactness properties.

3. The main result

We formulate the main result on the flat torus but it can be generalized to
bounded domains in R

d in a straightforward way.

Theorem 4. Let Td be the d dimensional flat torus and s′ ≥ s+1. There exists a
minimizer to the functional

(3.1) J (x) =

∫ 1

0

∥

∥

∥

∥

D

Dt
ϕ̇ ◦ ϕ−1

∥

∥

∥

∥

2

Hs′

dt ,

on the loop space Ω0,1(GHs′ (Td,Rd)) where D
Dt

is the covariant derivative associated

with the right-invariant Hs metric.

Before proving the theorem, we prove the following lemmas:

Lemma 5. Let α ∈ L2([0, 1], Hs), then there exists a unique solution defined on
[0, 1] to the system

ϕ̇ = v(3.2a)

v̇ = −Γ(ϕ)(v, v) + α ◦ ϕ ,(3.2b)

for given initial conditions ϕ(0) = ϕ0 ∈ Ds+1 and v(0) = v0 ∈ Hs+1.

Proof. Solutions exist for short time since the system is Lipschitz on Ds ×Hs and
the existence theorem for Caratheodory equation gives the result.
Existence for all time is not guaranteed a priori since the second equation of is
quadratic in v. Let us denote u = v ◦ ϕ−1 and f(t) := 1

2g(ϕ)(v, v) = 1
2‖u‖2Hs .

Deriving it in time gives f ′(t) = 〈α(t), u(t)〉Hs , so that by the Cauchy-Schwarz
inequality, we get

f(t) ≤
∫ t

0

√

f(z)‖α‖Hs dz ≤ ‖α‖L2([0,1],Hs)

√

∫ t

0

f(z) dz(3.3)

f(t) ≤ ‖α‖L2([0,1],Hs)

(

1 +

∫ t

0

f(z) dz

)

.(3.4)

Using Gronwall’s lemma, it implies that f(t) is bounded for on [0, T ] where T is the

supremum (possible blow-up) time of definition. Therefore, r :=
∫ T

0 ‖u‖2Hs dt =
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∫ T

0
f(t) dt < ∞ which means that u ∈ L2([0, T ], Hs). As a consequence, for all

time t ∈ [0, T [, ϕ(t) ∈ B(x0, r), which is the ball of radius r for the geodesic
distance on Ds. In addition, limt→T ϕ(t) is well defined since Ds is metrically
complete. Remark that Γ(ϕ(t)) is bounded (uniformly in time) as an operator
on Hs × Hs since Γ is smooth on Ds and thus continuous on the path ϕ(t). In
particular, the right-hand side of the equation (3.2b) belongs to L1([0, T ], Hs) so

that v(T ) :=
∫ T

0 −Γ(ϕ(t))(v(t), v(t)) +α(t) ◦ϕ(t) dt. Using short time existence on
(ϕ(T ), v(T )), the solution can be extended for short time from time T so that in
fact T = 1. �

In the following lemma, we study the solutions of the system (3.11) but written
on the dual of the tangent space at identity. As mentioned in Section 2, one can
rewrite the minimization as in Equation (2.12), however the ”dual” acceleration is
measured using with the corresponding dual norm. In our case, the dual norm
(w.r.t. to Hs) associated with Hs+1 ⊂ Hs is (Hs−1)∗ ⊂ (Hs)∗ as can be seen by a
direct computation in Fourier spaces.

Lemma 6. Let a ∈ L2([0, 1], (Hs−2)∗) then the following integral equation

(3.5) m(t) = Ad∗g(t)−1(m(0)) +

∫ t

0

Ad∗gt,s (a(s))ds ,

with initial condition m(0) ∈ (Hs−2)∗ has a unique solution in C0([0, T ], (Hs)∗).
If a ∈ L2([0, 1], (Hs−1)∗), then there exists a solution to the integral equation with
initial condition in m(0) ∈ (Hs−1)∗.

Proof. The proof of the existence for a ∈ L2([0, 1], (Hs−2)∗) follows a standard fixed
point method. Let Ψ : C0([0, T ], (Hs)∗) → C0([0, T ], (Hs)∗) defined by Formula
(3.5) namely

(3.6) Ψ(m)(t) = Ad∗g(t)−1 (m(0)) +

∫ t

0

Ad∗gt,s(a(s))ds ,

where gt,s is the flow of diffeomorphims generated by the vector field associated
with m. Remark first that Ψ(m) lies in C0([0, T ], (Hs)∗) which is well-defined
since the integrand is integrable. Now we claim that the map is a contraction on
(C0([0, T ], (Hs)∗), ‖ · ‖∞) for T small enough,

(3.7) ‖Ψ(m1)−Ψ(m2)‖∞ ≤ sup
t∈[0,T ]

‖Ad∗g1(t)−1(m(0))−Ad∗g2(t)−1(m(0))‖(Hs)∗+

∫ T

0

‖Ad∗g1t,s
a(s)−Ad∗g2t,s

a(s)‖(Hs)∗ ds .

We need to estimate for α ∈ (Hs−2)∗ and w ∈ Hs. There exists a constantM0 > 0
such that

〈Ad∗g1 (α)−Ad∗g2 (α), w〉L2 ≤ ‖α‖(Hs−2)∗‖Adg1(w)−Adg2 (w)‖Hs−2

M0‖α‖(Hs−2)∗‖g1 − g2‖Hs−2‖w‖Hs

Moreover, there exists a constant M1 > 0 s.t.

sup
s,t∈[0,T ]

‖g1t,s − g2t,s‖Hs−2 ≤M0‖m1 −m2‖L2([0,T ],(Hs)∗) .
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Therefore there exists M1 s.t.
(3.8)

‖Ψ(m1)−Ψ(m2)(t)‖∞ ≤M1

√
t‖m1 −m2‖∞(‖m(0)‖(Hs)∗ +

∫ T

0

‖a(s)‖(Hs)∗ ds) .

Hence the map Ψ is a contraction for t small enough and it therefore proves the
existence and uniqueness of a solution of formula (3.5) for short times. Remark that

Equation (3.8) gives an upper bound tlip :=
(

M1(‖m(0)‖W∗

2
+
∫ T

0
‖a(s)‖W∗

2
ds)

)−2

such that for every t < tlip, Ψ is a contraction. In addition this upper bound is
valid at any time t ∈ [0, T ]. Then the existence and uniqueness until time T follows
straightforwardly by an iterative application of the short-time result.

The second part of the proof consists in showing existence of solutions for
a ∈ L2([0, 1], (Hs−1)∗) which is done using a compactness argument. Let an con-
verging to a in L2([0, 1], (Hs−1)∗), then the solutionmn ∈ C0([0, T ], (Hs)∗) actually
belongs to H1([0, 1], (Hs−1)∗) because ‖Ad∗g(m)‖(Hs−1)∗ ≤ M2‖g‖Hs‖m‖(Hs−1)∗ .

By the Aubin-Lions-Simon theorem, H1([0, 1], (Hs−1)∗) is compactly embedded in
L2([0, 1], (Hs)∗), thus one can extract a strongly convergent sequence in L2([0, 1], (Hs)∗).
By theorem 2, the flow associated with the momentummn, denoted by gns,t strongly
converges in Hs (actually uniformly in s, t) to gs,t the flow associated with the limit
m. Then, it implies that the integrand Ad∗gn

t,s
(an(s)) in Formula (3.6) converges to

Ad∗gt,s(a(s)) in (Hs−1)∗. Since the integrand is bounded uniformly, the Lebesgue
convergence theorem applies and the result is obtained. �

Remark 1. (1) The reason why we are not able to treat the case of a ∈
L2([0, 1], (Hs−1)∗) is because the flow map in Theorem 2 is only contin-
uous and (possibly) not Lipschitz.

(2) Note that Lemma 6 can be considered as the Eulerian version of Lemma
5 and the latter achieves a better result since uniqueness of the solution
is proven in Hs+1. However, our proof of the main theorem will require
the use of Lemma 6 which gives the fact that the Eulerian velocity of the
solutions of Lemma 5 are bounded in H1([0, 1], (Hs)∗).

Lemma 7. Let s > d/2+1, αn ∈ Hs weakly converging to α and ϕn ∈ Diffs which
strongly converges to ϕ, then the composition αn ◦ ϕn weakly converges to α ◦ ϕ.
Proof. We prove the weak convergence by proving that the sequence is bounded
and that it weakly converges on a dense set of Hs. First, remark that ‖αn ◦ϕn‖Hs

is bounded in Hs since the composition by a diffeomorphism in Diffs is bounded
(see [BV17, Lemma 2.2]).

Let m ∈ (Hs)∗ ∩ M where M denotes the space of Radon measures, consider
〈αn ◦ ϕn,m〉L2 , which can be written by a change of variable as

(3.9) 〈αn ◦ ϕn,m〉L2 = 〈αn, (ϕn)∗(m)〉L2 ,

where (ϕn)∗(m) is the pushforward of m by ϕn. Since ϕn is strongly convergent
in Diffs, we have that (ϕn)∗(m) strongly converge in (Hs)∗ to ϕ∗(m). Therefore,
〈αn, (ϕn)∗(m)〉L2 converges to 〈α, ϕ∗(m)〉L2 , which gives the result. �

Proof of the theorem. First note that the space Ω0,1(GHs′ (Ω,Rd)) is non-empty: Con-

sider a path connecting ϕ0 and ϕ1 in GHs′ (Ω,Rd), thus, by concatenation of paths,

the problem is reduced to ϕ0 = ϕ1 where the path can be easily defined on the
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tangent space in a neighborhood of Id or in a local chart. We will use natural
coordinates, i.e. Id+Hs to describe elements of the loop space Ω0,1(GHs′ (Ω,Rd)).

The term
∥

∥

D
Dt
ϕ̇ ◦ ϕ−1

∥

∥

2

Hs′ can be written in coordinates

‖ (ϕ̈+ Γ(ϕ)(ϕ̇, ϕ̇)) ◦ ϕ−1‖2
Hs′

so that, it is natural to introduce the change of variable (v̇ + Γ(ϕ)(v, v)) ◦ϕ−1 := α
where ϕ̇ = v. The variational problem (3.1) can be rewritten as the minimization

of the functional defined on the Hilbert space L2([0, 1], Hs′)

(3.10) ℓ(α) =

∫ 1

0

‖α(t)‖2
Hs′ dt ,

under the constraint

(3.11)

{

ϕ̇ = v

v̇ = −Γ(ϕ)(v, v) + α ◦ ϕ ,

and the boundary conditions, ϕ(0) = ϕ0, ϕ(1) = ϕ1 and v(0) = v0, v(1) = v1.

This functional is lower semi-continuous on L2([0, 1], Hs′). Let αn be a min-

imizing sequence in L2([0, 1], Hs′) weakly converging to α. The condition to be
checked is the constraints that have to be satisfied at the limit. Using Lemma 6,
the sequence vn ◦ϕ−1

n ∈ H1([0, 1], Hs−1) is bounded and one can extract a strongly
converging sequence in C0([0, 1], Hs) which implies the strong convergence of ϕn(1)
and vn(1) in H

s. The first consequence is that the boundary constraints ϕ(1), v(1)
are satisfied at the limit. It also implies that the term Γ(ϕn)(vn, vn) is strongly
convergent in Hs and the term αn ◦ϕn is weakly convergent to α ◦ϕ, using Lemma

7. Therefore, we have the equality v(t) = v(0) +
∫ t

0
−Γ(ϕ(s))(v(s), v(s)) +α ◦ϕds,

which implies that the couple (ϕ, v) is the solution of the integral equation associ-
ated with System (3.11). �

Theorem 8 (Spline interpolation of time sequences). Let ϕ1, . . . , ϕn be n diffeo-
morphisms in Diffs+1

0 and t1 < . . . < tn be a sequence of n positive reals. There

exists a path ϕ(t) ∈ Diffs+1
0 , which minimize the acceleration functional

(3.12) ‖ϕ̇(0) ◦ ϕ−1‖2
Hs′ +

∫ tn

t1

∥

∥

∥

∥

D

Dt
ϕ̇ ◦ ϕ−1

∥

∥

∥

∥

2

Hs′

dt ,

among all curves satisfying ϕ(ti) = ϕi for i ∈ 1, . . . , n.

Proof. The proof is similar to that of Theorem 4 and we do not repeat the arguments
here. Note that the penalization on the initial speed seems necessary in order for
the curve to stay in a bounded metric ball.1 �

4. Conclusion

This theoretical proof of existence was provided to fill in the gap of the varia-
tional models proposed in [SVN15]. However, we do have treated the case of the
induced metric on the space of images, which was also implemented in [SVN15].

1On the flat 2D torus, straight lines with irrational slopes are dense and they can be
parametrized with arbitrarily high velocity so that the infimum of (3.12) is 0 without speed
penalization.
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However, with minor modifications, the approach developed in this article can pos-
sibly adapted. On a more theoretical point of view, we leave the open question if
the approach can be adapted for s′ > s.
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